The graduate program in Water Resources and Environmental Engineering at Rutgers University focuses on environmental pollution control, management, and protection of resources, including air, water and land. The student can specialize in the areas of air quality management/pollution control, risk assessment, waste management (including environmental restoration, groundwater management, and solid/hazardous/mixed waste management), water quality/control (including waste treatment, industrial and municipal wastewater treatment and disposal, and aquatic chemistry), and water resources engineering and management.
The program usually focuses on the application of quantitative techniques to practical problems encountered in the field of environmental engineering, and is based on advanced analytical, numerical, and statistical methods applied to water chemistry; microbiology; transport processes in surface and ground waters; hydrology of surface and ground waters; hydroclimatology of land-atmospheric interactions; hydrometeorology; and geochemistry, geomorphology, and applied geophysics.
The major areas of emphasis for graduate programs are Water Resources, Treatment Processes, Fluid Mechanics & Coastal Engineering, Water & Air Quality Management, Environmental Engineering Science.
COURSES
Erosion, transport, and deposition of sediment within a watershed and, especially, the fluvial network; flow resistance in natural channels; suspended load, bed load, and total load; noncohesive vs. cohesive sediment; sedimentation; sediment transport as an index of pollutant movement; numerical modeling and field monitoring.
Introduction to mathematical modeling of water quality well- versus partially-mixed water bodies; turbulent diffusion, velocity-induced dispersion; reaction kinetics; biological processes, growth kinetics, BOD, dissolved oxygen, photosynthesis; development of water quality models.
The use of sensor networks for understanding and managing large-scale environmental systems. Topics include environmental information systems, data-driven modeling, geostatistics, and real-time decision making. Prerequisities: Familiarity with basic statistics and with Matlab or similar program.
Porous media; fundamental equations of groundwater flow; confined flow; unconfined flow; hydraulics of wells; numerical methods; groundwater contamination; investigation; remediation and clean-up; monitoring computer applications.
Generation and propagation of tides; salinity intrusion, pollutant flushing, and sedimentation in estuaries; circulation in the coastal ocean; coastal water quality modeling; coastal wetlands; gravity waves; coastal erosion; coastal structure design.
Application of fundamental principles of environmental microbiology to bio-electrochemical systems, nutrient removal and recovery, biogas production, biofiltration, disinfection, and microbially influenced corrosion.
Green infrastructure using both natural and engineered systems to sustain ecological health, minimize environmental impacts, reduce energy consumption, and conserve resources for future generations. Stormwater management, low-impact development, wastewater management, sustainable water supply, minimizing disruption of the environment by built structures, and harnessing energy from existing water infrastructure.
Application of quantitative microbial risk assessment and One Health framework for problems at the intersection of public, animal, and environmental health and engineered systems. Case studies of classical and current issues (e.g., antimicrobial resistance).